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Abstract

In this project, students get – on a practical level – familiar with the
series of steps required to perform the full calculation of a scattering
process in quantum electrodynamics (QED) in the Born approximation
(“tree level”).

The steps include the derivation of Feynman rules from a La-
grangian, generation of the diagrams and the corresponding ampli-
tude, squaring of the amplitude and calculation of the cross section.
For all tasks a computer-based approach is envisaged, based on the
programming language Mathematica.

As a prerequisite the students should have attended “Theoretical
Particle Physics 1” or “Concepts and phenomena of particle physics”.
Also basic knowledge about a computer algebra program such as Ma-
thematica is beneficial.

Prior to starting this project

• Contact the supervisor about access to Mathematica.
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Figure 1: Left: Schematic diagram of Compton’s experiment (from
Wikipedia). Right: Tree-level diagrams for Compton scattering e−γ → e−γ.

1 Introduction
Elementary processes in quantum electrodynamics (QED) such as Bhabha
scattering (e+e− → e+e−), Møller scattering (e−e− → e−e−), Compton scat-
tering (e−γ → e−γ), pair annihilation (e−e+ → γγ), and muon pair creation
(e+e− → µ+µ−) have played a major rôle since the early days of particle
collision experiments. The scattering experiment by Compton (fig. 1), for
instance, supplied evidence that photons carry momentum, and that they
can transfer momentum to other particles. Moreover, Bhabha scattering
(fig. 2) is among the prime processes to measure the luminosity at e+e− col-
liders, which in turn is an indispensable input when measuring cross sections
of basically any other process.

On the theoretical side, the technical steps that are required to carry
out the calculation of a cross section are the derivation of the Feynman
rules from the Lagrangian density, the generation of the Feynman diagrams
and the transition amplitude, the squaring of the latter, and the integration
over the final-state phase space. Since all these steps follow more or less
straightforwardly from well-established rules in quantum field theory, there
is a high potential of automation. Therefore, the computer has become an
indispensable tool in carrying out calculations in quantum field theory. Many
dedicated programs and packages were developed, tailored for particular steps
of the calculation or for carrying out the calculation as a whole.

In this project, we first get familiar with the theory of quantum electro-
dynamics (QED), and repeat the basic steps that have to be performed in a
cross-section calculation. We will then briefly introduce the Mathematica
packages FeynRules, FeynArts, and FeynCalc, which allow to automate
many steps of the calculation. The task will then be to use these packages
to compute in QED the cross sections of the muon pair production and the
compton scattering process in the Born approximation (i.e. at “tree-level”).
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Figure 2: Tree-level Feynman diagrams for BhaBha scattering e+e− → e+e−.

2 Quantum electrodynamics
Quantum electrodynamics (QED) is a relativistic, quantum-field-theoretic
description of the electromagnetic interaction of electrons and positrons (charged
Dirac fermions in general) with photons.

2.1 Lagrangian density, gauge symmetry

The Lagrangian density of QED reads

L = −1

4
FµνF

µν︸ ︷︷ ︸
free photon field

+ ψ̄(i/∂ −m)ψ︸ ︷︷ ︸
free electron field

+ e ψ̄ /Aψ︸ ︷︷ ︸
interaction

.

Here ψ is a Dirac spinor describing the fermion (electron, positron), Aµ
is a vector field describing the photon, and Fµν = ∂µAν − ∂νAµ is the field
strength tensor. m is the fermion mass, and e =

√
4πα the electric charge of

the positron (α ∼ 1/137 is the fine structure constant). In L we distinguish
terms that describe free fields from interaction terms. The former contain
at most two fields, and are classified as mass terms (with masses) or kinetic
terms (with derivatives). The interaction terms have more than two fields.

The Lagrangian density of QED is invariant under the local gauge trans-
formation

ψ(x)→ ψ′(x) = eieΛ(x) ψ(x) ,

Aµ → A′µ(x) = Aµ + ∂µΛ(x) .

Moreover, the interaction term can be obtained from the theory of free fields
by means of a procedure called “minimal substitution”,

∂µ → Dµ = ∂µ − ieAµ(x) .

Dµ is called the “covariant derivative”.
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2.2 Feynman rules

The Feynman rules that can be derived from the Lagrangian density are
classified as propagators, external lines and vertices, and are usually given in
momentum space.

The propagators are the Green’s functions of the free field equations (e =
0), e.g. for the electron

(i/∂ −m)G(x) = δ(4)(x) ,

which after Fourier transformation

G(x) =

∫
d4p

(2π)4
e−ipx G̃(p) , δ(4)(x) =

∫
d4p

(2π)4
e−ipx

gives

G̃(p) =
/p+m

p2 −m2 + iη
.

The electron propagator is then S̃(p) = i G̃(p), and the infinitesimal η > 0
moves the poles away from the real axis such as to have causal boundary
conditions. The attempt to perform analogous steps to derive the photon

propagator Dνρ(x) =

∫
d4p

(2π)4
e−ipx D̃νρ(p) from

(−gµν� + ∂µ∂ν)D
νρ(x) = −δρµ δ(4)(x)

fails since the equation

(p2gµν − pµpν)D̃νρ(p) = −δρµ

cannot be inverted (Mµν = p2gµν − pµpν has an eigenvalue zero due to
pµMµν = 0). One possible solution is to add a gauge-fixing term to L,

L → L− 1

2ξ
(∂µA

µ)2 ,

which then gives

D̃νρ(p) = −
gνρ − (1− ξ) pνpρ

p2+iη

p2 + iη
.

The photon propagator is then ∆̃νρ(p) = i D̃νρ(p). ξ is called gauge param-
eter . Physical observables do not depend on ξ. One of the common choices
is the Feynman gauge ξ = 1 which we will use throughout.
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The Feynman rules for the external lines can simply be taken from the
classical solution of the free field equations. For the electron/positron we
get the familiar spinors u(p, s), ū(p, s), v(p, s), v̄(p, s) for incoming/outgoing
(anti)fermion. For the photon we obtain the polarization vector εµ(p, λ).

In order to derive Feynman rules for interaction vertices from L we first
give the general prescription, together with an example, and subsequently
apply it to QED. The recipe consists of four steps

1. Search for all products in L containing a previously specified combina-
tion of fields. These form the external lines of the vertex.

E.g. −g(∂µAν)A
µBν = −g(∂µA

ρ)gρνA
µBν

2. Replace all derivatives by (−i) times the incoming momenta of the
fields on which they act.

−→ −g(−iqµ)gρνA
ρAµBν = ig(qµgρν)A

ρAµBν

3. Sum over all permutations of the indices and momenta of identical
external fields. (Note that ψ and ψ̄ are not identical fields!)

−→ ig(qµgρν + q′ρgµν)A
ρAµBν

4. Discard all external fields.

−→ ig(qµgρν + q′ρgµν) .

Applied to QED we find

1. ieψ̄γµψAµ

2. ieψ̄γµψAµ

3. ieψ̄γµψAµ

4. ieγµ.

These rules are supplemented by the following items

• Impose four-momentum conservation at each vertex

• Integrate over each unconstrained (loop) momentum with measure
∫

d4k

(2π)4
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Figure 3: Bunches in a storage ring experiment.

• Along a fermion line, order the Dirac matrices and spinors opposite to the
direction of fermion flow.

• Include a factor (−1) and a Dirac trace for each closed fermion loop.

• Include a factor (−1) when permutating external fermion lines in processes
with more than one diagram.

More on Feynman rules in QED and other theories can be found in the
literature on quantum field theory, e.g. [1–5]). We summarize the QED
Feynman rules below.

2.3 QED Feynman rules, summary
p

=
i(/p+m)

p2 −m2 + iη

pµ ν
= −i

gµν − (1− ξ) pµpν

p2+iη

p2 + iη

µ
= ieγµ

p,s
= u(p, s)

p,s
= ū(p, s)

p,s
= v̄(p, s)

p,s
= v(p, s)

p,λ
µ

= εµ(p, λ)

p,λ
µ

= ε∗µ(p, λ)

3 Computing cross sections
One of the most important quantities at particle colliders is the differential
cross section. To define it, we first have a look at another quantity, the
luminosity , which is a measure of the density and velocity of particles and
related to the particle flux flux in a beam. The flux φ is the number of
particles N per time t that cross a certain area A,

φ =
N

A t
=
N v

A l
=
N v

V
= ρ v ,

where we have used that the velocity v = l/t, the volume V = A l, and
the density ρ = N/V . For a storage ring experiment, where two oppositely
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moving beams are brought to collision, the luminosity L is given by the
formula

L = f n
N1N2

A
.

Here N1,2 is the number of particles in each bunch, see figure 3, n is the
number of bunches in one beam, and f the revolution frequeny. L is measured
in units of cm−2s−1. Another important collider parameter is the integrated
luminosity ∫

dt L

which is a measure of the amount of data taken. Its unit 1/cm2 is that
of an inverse area, and it is usually expressed in inverse barns, b−1, where
1b = 10−24 cm.

The differential cross section dσ is then defined as

dσ =

(
dN

dt dPS

)
dPS

1

L
,

where dN/(dt dPS) is the number N of events per time t in a specific phase
space element dPS. The phase space element can for instance be the solid
angle, dPS = dΩ, or the energy or (transverse) momentum of a particle.
Expressed in terms of the Lorentz-invariant transition amplitude (“matrix
element”) M, the formula for the differential cross section of the particle
reaction A+B → F1 + . . .+Fn with momenta k1 + k2 → p1 + . . .+ pn reads

dσ =
1

4
√

(k1k2)2 −m2
Am

2
B︸ ︷︷ ︸

flux factor

(2π)4 δ(4)(k1 + k2 −
n∑
i=1

pi)
n∏
i=1

d̃pi︸ ︷︷ ︸
n particle phase space Rn

∑′
|M|2 .

We emphasize that the first two elements, the flux factor and the n particle
phase space, are process-independent, and only the matrix element term is
specific to the process. Here d̃p = d3~p/(2π)3/(2Ep) is the Lorentz-invariant
integration measure for each final-state particle, and

∑′ denotes the following
procedure. If the beams are unpolarized, we average over the all spins in the
initial state (sum over the spins and divide by the number of physical spin
projections). If the spins of the particles in the final state are not measured,
we sum over the all spins in the final state.

The procedure for obtaining iM should be familiar from the particle
physics lectures, a brief summary is

1. Draw all connected, amputated Feynman diagrams which are relevant to
the process up to a given perturbative order.

7



2. Write down the mathematical expression that corresponds to each diagram
following, e.g. for QED, the rules from the previous section.

3. Divide each diagram by its symmetry factor (see e.g. Peskin [2]).

4. Sum up all diagrams.

For computing the cross section, we must square the amplitude. When
dealing with fermion lines, the following relations are useful. Let Γ be any
string of Dirac matrices and w̄(p, s) = w†(p, s)γ0 for w = u (fermions) or
w = v (anti-fermions). Then the relation

[w̄1(p, s) Γw2(p′, s′)]
∗

= w̄2(p′, s′) Γ̄w1(p, s)

with Γ̄ = γ0 Γ† γ0 holds. Moreover,

γ̄µ = γµ , γµγ5= γµγ5 , σµν = σµν .

γ̄5 = −γ5 , γµγν= γνγµ , Γ1Γ2 = Γ̄2 Γ̄1 .

The squared amplitude can be turned into a Dirac trace by means of the
so-called Casimir trick,∣∣w̄1(p, s) Γw2(p′, s′)

∣∣2 = w̄1(p, s) Γw2(p′, s′)w̄2(p′, s′) Γ̄w1(p, s)

= Tr
[
w1(p, s)w̄1(p, s) Γw2(p′, s′)w̄2(p′, s′) Γ̄

]
.

The combinations ww̄ are then turned into Dirac matrices via the formulas for
the spin sums, (those for the photon polarization is given for completeness)∑

s

u(p, s)ū(p, s) = /p+m,
∑
s

v(p, s)v̄(p, s) = /p−m,

∑
λ

ε∗µ(k, λ) εν(k, λ)→ −gµν .

Finally, traces of Dirac matrices obey

Tr
[
γµ1 · . . . · γµ2n+1

]
= 0 n ∈ N

Tr
[
γµγν

]
= 4 gµν

Tr
[
γµγνγργσ

]
= 4 (gµνgρσ − gµρgνσ + gµσgνρ)

Tr
[
γµγνγργσγ5

]
= −4iεµνρσ .

For a 2→ 2 process A+B → F1 +F2 the cross section differential in the
center-of-mass solid angle dΩC.M.S. assumes the form

dσ(AB → CD)

dΩC.M.S.
=

1

64π2 s

λF1F2(s)

λAB(s)

∑
′ |M|2
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with the usual Mandelstam variable s = (k1 + k2)2 and

λij(s) =
√

(s− (mi +mj)2)(s− (mi −mj)2).
The total cross section σ is the differential cross section integrated over

the entire phase space,

σ =
1

S!

∫
dσ.

Its unit is that of an area, which is usually given in barns. The factor 1/S!
is a symmetry factor which stands for the following procedure. For every j
identical particles in the final state, add a factor of 1/j!.

4 The Mathematica package FeynRules
The derivation of Feynman rules from a Lagrangian follows straightforward
rules, see the previous chapter, and is therefore highly suitable for automa-
tion. The package FeynRules [6–9] is dedicated to this task. Its manual
can be found at http://feynrules.irmp.ucl.ac.be/ together with the package
files. We use an example to illustrate the relevant commands. The package is
shipped with a first example in the subdirectory Models/FirstExample/. It
contains the model file FirstExample.fr for QCD (quantum chromodynamics)
with three quark flavours. It contains the following definitions

• Index definitions, gives the types and ranges of indices, e.g.

IndexRange[ Index[Generation] ] = Range[3]

IndexRange[ Index[Colour] ] = Range[3]

IndexRange[ Index[Gluon] ] = Range[8]

IndexStyle[Colour, i]

IndexStyle[Gluon, a]

IndexStyle[Generation, f]

• Parameter list, in this case defines the coupling constant,

M$Parameters = {

gs == {InteractionOrder -> {QCD, 1},

Value -> 1.2, TeX -> Subscript[g, s]} }

• Gauge group list

M$GaugeGroups = { SU3C == { Abelian -> False,

GaugeBoson -> G, StructureConstant -> f,
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Representations -> {T, Colour},

CouplingConstant -> gs}}

• Particle classes list. The model file contains two particle classes. First,
the class F[1], a fermion represented by a symbol q, containing three
members (u, c, t). Second, the class V[1], a vector represented by the
symbol G. For instance for V[1] (the gluon)

M$ClassesDescription = { V[1] == { ClassName -> G,

SelfConjugate -> True, Indices -> {Index[Gluon]},

Mass -> 0, Width -> 0} }

• The Lagrangian is then entered in the usual textbook way

L = -1/4 FS[G, µ, ν, a] FS[G, µ, ν, a]

+ I HC[q].Ga[µ].DC[q, µ]

- MQ[f] HC[q[s, f, i]].q[s, f, i] .

The meaning of the symbols is the following: FS[G, µ, ν, a] is the
field strength tensor connected with G. q[f,s,i] is the quark field with
Dirac index s, generation index f and colour index i, HC its hermitian
conjugate. MQ[f] is the quark mass, Ga[µ] the Dirac matrix γµ, and DC
the covariant derivative.

• With the Lagrangian at hand, several commands can be applied, for in-
stance

ExpandIndices[L] expands out the indices of the Lagrangian. Possi-
ble options include FlavorExpand (whether and which flavour indices
should be expanded, values True, False, Generation. Moreover, there
are MaxParticles, MinParticles, MaxCanonicalDimension, and
MinCanonicalDimension, which select only those terms in the la-
grangian with at most/at least the specified number of particles / the
specified canonical dimension. Finally, SelectParticles selects only
those terms in the lagrangian which contain exactly the specified external
fields, for instance

ExpandIndices[L, SelectParticles -> {{G, G, G}, {G, G,
G, G}}]

selects only the three- and four-gluon interaction terms.

• The Feynman rules can be obtained via

FeynmanRules[L];
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which is one of the main commands of the package. The options MaxParticles,
MinParticles, and SelectParticles can be applied here as well.
Moreover, there are the options Free and Contains, as in

FeynmanRules[L, Free -> q];

FeynmanRules[L, Contains -> q];

5 The Mathematica package FeynArts
The package FeynArts [10] is a package to generate the diagrams and the
transition amplitude of a particle reaction. Moreover, it has some nice graph-
ical features which we explore below. Let us describe the main commands,

• One first has to generate the topology, essentially meaning the number of
incoming and outgoing particles, and the number of loops.

CreateTopologies[l, i -> o, ExcludeTopologies ->
Internal]

Creates all topologies with l loops (zero for tree-level), i incoming and o
outgoing particles. The option “ExcludeTopologies → Internal” makes the
program keep only one-particle irreducible (1PI) graphs.

• FeynArts distinguishes three levels of fields: Generic (F, S, V, U, T, SV
for fermion, scalar, vector, ghost, tensor, scalar-vector mixing), Classes
(fields with common properties, e.g. under charge conjugation), Particles
(class members, antiparticles get a minus-sign in front of the field, e.g.
F[2,{1}] is the electron, -F[2,{1}] is the positron. For inserting
fields into topologies, we type for instance for Bhabha scattering

InsertFields[topo, {F[2, {1}], -F[2, {1}]} ->
{F[2, {1}], -F[2, {1}]}]

Possible options include InsertionLevel, which can take one or more
of the following, {Generic}, {Classes}, {Particles}. The option
ExcludeParticles keeps only diagrams without the particles specified.
LastSelections keeps only diagrams with the particles specified.

• Paint[expr, ColumnsXRows -> n] draws the set of diagrams with
n graphs per line.

To make a specific example, the following series of commands generates
the tree-level diagrams for Bhabha scattering shown in fig. 2,
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bhabha = CreateTopologies[0, 2 -> 2];

InsertFields[bhabha, F[2, 1], -F[2, 1] -> F[2, 1], -F[2,
1], InsertionLevel -> Classes, ExcludeParticles -> S[1],
S[2], V[2], F[2, 2], F[2, 3]];

Paint[%];

Export[“bhabha.pdf”, %]

The last command saves the picture to a file. Other output formats such as
.ps, .eps or .tex are also possible.

• Finally we create the amplitude with

CreateFeynAmp[diags] ,

where diags is the expression created with the InsertFields command.

Further commands can be found in the FeynArts guide, available at
www.feynarts.de.

6 The Mathematica package FeynCalc
FeynCalc is a Mathematica package for the automated calculation of
amplitudes and cross sections in quantum field theory, currently at version
9.3 [11]. We summarize some of the most frequently-used commands here,
and refer to [11] for more information

• Pair[LorentzIndex[µ], Momentum[v]]

Denotes the four-momentum vµ. The command Pair also allows to in-
put the metric (Pair[LorentzIndex[µ], LorentzIndex[ν]]) and
scalar products (Pair[Momentum[u], Momentum[v]]).

• MetricTensor[µ, ν]

Alternative way to input the metric.

• Eps[LorentzIndex[µ],LorentzIndex[ν],LorentzIndex[ρ],
LorentzIndex[σ]]

Levi-Civita tensor, always assumes upper indices and uses ε0123 = +1. If
contracted with momenta, can write for example Eps[LorentzIndex[mu],
LorentzIndex[nu], Momentum[p], Momentum[q]] for εµναβpαqβ.

• Contract[expr]

Contracts equal indices in expr.
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• DiracGamma[LorentzIndex[mu]], DiracGamma[5],
DiracGamma[Momentum[p]]

Dirac matrices γµ, γ5, and /p.

• GA[mu], GA[5], GS[p]

Like before, but in a shorter (external) notation. FCI and FCE (for Feyn-
CalcInternal/External) switch between the two notations. Note that the
two notations also have different FullForm.

• GA[6], GA[7], short-hand notation for the projectors PR/L = (1±γ5)/2.

• GA[mu].GA[nu] or simply GA[mu,nu]. Product γµγν of Dirac matrices

• DiracSigma[GA[mu, nu]], σµν .

• DiracReduce[expr]

Reduces expr to the basis {1, γ5, γ
µ, γµγ5, σ

µν} of bilinear covariants.

• Tr[expr]

computes the Dirac trace of expr. Warning: Traces without explicit Dirac
structures are not evaluated.

• For external Dirac fermions, the syntax for the spinors is
SpinorU[p,m] ,

SpinorUBar[p,m] ,

SpinorV[p,m] ,

SpinorVBar[p,m] .

Note that the first entry is the momentum and the second is the mass of
the particle. The spin index is suppressed.

• For external photons, the syntax for the polarization vectors is
PolarizationVector[k,µ] ,

Conjugate[PolarizationVector[k,µ]] .

Again the polarization index is suppressed. To sum over polarizations, use
PolarizationSum[µ,ν] .

• For propagators we can use
FeynAmpDenominator[PropagatorDenominator[Momentum[k],
m]] to input a propagator. The short-hand (external) notation would be
FAD[k, m]. For several propagators, write e.g.
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FeynAmpDenominator[PropagatorDenominator[Momentum[k],
m1], PropagatorDenominator[Momentum[k] + Momentum[p],
m2]] or FAD[k, m1, k + p, m2].

• There are various commands to simplify expressions, such as
DiracSimplify, DiracReduce, Calc, DotSimplify, DiracOrder.

The package has also more features such as calculations in the color algebraof
SU(N) etc. We omit these features since they are not relevant for this lab
course.

7 Tasks for the lab course
The task for the lab course consists of three parts

1. Derivation of the Feynman rules of QED with the package
FeynRules. Create the FeynRules model file for QED with two Dirac
fermions e and µ, and use the package to derive the corresponding Feyn-
man rules.

2. Computation of the Born-level differential and total cross section
for muon pair creation. Using the package FeynArts, generate the
diagrams and the amplitude for the process e−(p1)e+(p2)→ µ−(p3)µ+(p4)
at tree level. Use the picture of the diagrams in your report. Further
process the transition amplitude with FeynCalc and express your result
for the squared and spin-summed amplitude in terms of the Mandelstam
variables s, t and u. Finaly, perform the phase-space integration.

3. Computation of the Born-level differential and total cross sec-
tion for Compton scattering. Repeat the steps of 2. for Compton
scattering e−(p1)γ(p2) → e−(p3)γ(p4). Contrary to the case above, eval-
uate the differential and total cross section in the lab frame, where the
initial electron is at rest. To this end, you can use the formula

dσ

dΩlab
=

1

64π2m2
e

(
ω′

ω

)2 ∑
′ |M|2 ,

where ω and ω′ are the energies of the initial and final state photon in the
lab frame, respectively. Moreover, make use of the relation

ω′

me

=
ω
me

1 + ω
me

(1− cos θ)
,

which you are supposed to derive from kinematic considerations. θ denotes
the angle between the incoming and outgoing photon.
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